Package index
-
smart_read()
- Read a data file
-
read_dictionary()
print(<dictionary>)
`[`(<dictionary>)
apply_dictionary()
has_dictionary()
get_dictionary()
- Data Dictionaries
-
read_meta()
- Read CSV with iNZight metadata
-
read_text()
- Read text as data
-
load_linked()
- Import linked data into an
inzdf
object
-
load_rda()
- Load object(s) from an Rdata file
-
save_rda()
- Save an object with, optionally, a (valid) name
-
sheets()
- List available sheets within a file
-
inzdf()
- iNZight data frame object
Dataset operations
Methods for working with entire datasets at once. For users coming from the iNZight GUI, these operations would be found in the Dataset menu.
-
aggregate_data()
aggregate_dt()
- Aggregate data by categorical variables
-
append_rows()
- Append rows to a dataset
-
remove_rows()
- Remove rows from data by row numbers
-
filter(<inzdf_db>)
- Filter
-
filter_cat()
- Filter data by levels of categorical variables
-
filter_num()
- Filter data by levels of numeric variables
-
join_data()
- Join data with another dataset
-
separate_var()
- Separate columns
-
reshape_data()
- Reshaping dataset from wide to long or from long to wide
-
combine_vars()
- Combine variables into one categorical variable
-
select_vars()
- Select variables from a dataset
-
sort_vars()
- Sort data by variables
-
select
- Select
-
validation_details()
- Details of Validation Rule Results
-
validation_summary()
- Validation Confrontation Summary
Variable operations
Methods for working with one or several variables (columns) in a dataset. iNZight GUI users will be familiar with these operations from the Variables menu.
-
collapse_cat()
- Collapse data by values of a categorical variable
-
convert_to_cat()
- Convert variables to categorical variables
-
convert_to_date()
- Convert variables to dates
-
convert_to_datetime()
- Convert variables to date-time
-
create_vars()
- Create new variables
-
delete_vars()
- Delete variables
-
extract_dt_comp()
- Extract date component from a date-time variable
-
extract_part()
- Extract part of a datetimes variable (DEPRECATED)
-
form_class_intervals()
- Form Class Intervals
-
missing_to_cat()
- Convert missing values to categorical variables
-
rank_vars()
- Rank the data of numeric variables
-
rename_levels()
- Rename the levels of a categorical variable
-
rename_vars()
- Rename column names
-
reorder_levels()
- Reorder the levels of a categorical variable
-
standardize_vars()
- Standardize the data of a numeric variable
-
transform_vars()
- Transform data of numeric variables
-
code()
- Get Data's Code
-
print_code()
- Tidy-printing of the code attached to an object
-
tidy_all_code()
- iNZight Tidy Code
Working with dataset objects in R
Many of these functions are only useful in scripts, and are provided more for GUIs that R users.
-
add_suffix()
- Add suffix to string
-
create_varname()
- Create variable name
-
make_names()
- Make unique variable names
-
is_cat()
- Is factor check
-
is_dt()
- Is datetime check
-
is_num()
- Is numeric check
-
is_preview()
- Is Preview
-
is_survey()
- Check if object is a survey object (either standard or replicate design)
-
is_svydesign()
- Check if object is a survey object (created by svydesign())
-
is_svyrep()
- Check if object is a replicate survey object (created by svrepdesign())
-
vartype()
- Get variable type name
-
vartypes()
- Get all variable types from data object
-
`%notin%`
- Anti value matching
-
`%||%`
- NULL or operator
-
survey_IQR()
- Interquartile range function for surveys
-
fitModel()
- Fit models
-
fitDesign()
- Fit a survey design
-
newdevice()
- Open a New Graphics Device
-
random_sample()
- Random sampling without replacement