Rank the values of numeric variables, for example, in descending order,
and then returns the result along with tidyverse code used to generate it.
See row_number
and percent_rank
.
Usage
rank_vars(data, vars, rank_type = c("min", "dense", "percent"))
Arguments
- data
a dataframe with the variables to rank
- vars
a character vector of numeric variables in
data
to rank- rank_type
either
"min"
,"dense"
or"percent"
, seerow_number
,percent_rank
Value
the original dataframe containing new columns with the ranks of the
variables in vars
with tidyverse code attached
Examples
ranked <- rank_vars(iris, vars = c("Sepal.Length", "Petal.Length"))
cat(code(ranked))
#> iris |> dplyr::mutate(Sepal.Length.min_rank = dplyr::min_rank(Sepal.Length), .after = Sepal.Length) |> dplyr::mutate(Petal.Length.min_rank = dplyr::min_rank( Petal.Length), .after = Petal.Length)
head(ranked)
#> Sepal.Length Sepal.Length.min_rank Sepal.Width Petal.Length
#> 1 5.1 33 3.5 1.4
#> 2 4.9 17 3.0 1.4
#> 3 4.7 10 3.2 1.3
#> 4 4.6 6 3.1 1.5
#> 5 5.0 23 3.6 1.4
#> 6 5.4 47 3.9 1.7
#> Petal.Length.min_rank Petal.Width Species
#> 1 12 0.2 setosa
#> 2 12 0.2 setosa
#> 3 5 0.2 setosa
#> 4 25 0.2 setosa
#> 5 12 0.2 setosa
#> 6 45 0.4 setosa