Package index
-
smart_read() - Read a data file
-
read_dictionary()print(<dictionary>)`[`(<dictionary>)apply_dictionary()has_dictionary()get_dictionary() - Data Dictionaries
-
read_meta() - Read CSV with iNZight metadata
-
read_text() - Read text as data
-
load_linked() - Import linked data into an
inzdfobject
-
load_rda() - Load object(s) from an Rdata file
-
save_rda() - Save an object with, optionally, a (valid) name
-
sheets() - List available sheets within a file
-
inzdf() - iNZight data frame object
Dataset operations
Methods for working with entire datasets at once. For users coming from the iNZight GUI, these operations would be found in the Dataset menu.
-
aggregate_data()aggregate_dt() - Aggregate data by categorical variables
-
append_rows() - Append rows to a dataset
-
remove_rows() - Remove rows from data by row numbers
-
filter(<inzdf_db>) - Filter
-
filter_cat() - Filter data by levels of categorical variables
-
filter_num() - Filter data by levels of numeric variables
-
join_data() - Join data with another dataset
-
separate_var() - Separate columns
-
reshape_data() - Reshaping dataset from wide to long or from long to wide
-
combine_vars() - Combine variables into one categorical variable
-
select_vars() - Select variables from a dataset
-
sort_vars() - Sort data by variables
-
select - Select
-
validation_details() - Details of Validation Rule Results
-
validation_summary() - Validation Confrontation Summary
Variable operations
Methods for working with one or several variables (columns) in a dataset. iNZight GUI users will be familiar with these operations from the Variables menu.
-
collapse_cat() - Collapse data by values of a categorical variable
-
convert_to_cat() - Convert variables to categorical variables
-
convert_to_date() - Convert variables to dates
-
convert_to_datetime() - Convert variables to date-time
-
create_vars() - Create new variables
-
delete_vars() - Delete variables
-
extract_dt_comp() - Extract date component from a date-time variable
-
extract_part() - Extract part of a datetimes variable (DEPRECATED)
-
form_class_intervals() - Form Class Intervals
-
missing_to_cat() - Convert missing values to categorical variables
-
rank_vars() - Rank the data of numeric variables
-
rename_levels() - Rename the levels of a categorical variable
-
rename_vars() - Rename column names
-
reorder_levels() - Reorder the levels of a categorical variable
-
standardize_vars() - Standardize the data of a numeric variable
-
transform_vars() - Transform data of numeric variables
-
code() - Get Data's Code
-
print_code() - Tidy-printing of the code attached to an object
-
tidy_all_code() - iNZight Tidy Code
Working with dataset objects in R
Many of these functions are only useful in scripts, and are provided more for GUIs that R users.
-
add_suffix() - Add suffix to string
-
create_varname() - Create variable name
-
make_names() - Make unique variable names
-
is_cat() - Is factor check
-
is_dt() - Is datetime check
-
is_num() - Is numeric check
-
is_preview() - Is Preview
-
is_survey() - Check if object is a survey object (either standard or replicate design)
-
is_svydesign() - Check if object is a survey object (created by svydesign())
-
is_svyrep() - Check if object is a replicate survey object (created by svrepdesign())
-
vartype() - Get variable type name
-
vartypes() - Get all variable types from data object
-
`%notin%` - Anti value matching
-
`%||%` - NULL or operator
-
survey_IQR() - Interquartile range function for surveys
-
fitModel() - Fit models
-
fitDesign() - Fit a survey design
-
newdevice() - Open a New Graphics Device
-
random_sample() - Random sampling without replacement